e content for students of patliputra university

B. Sc. (Honrs) Part 2paper 3

Subject: Mathematics

Title/Heading of topic:concepts of rings, integral domains and fields and their example

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

concept of rings, integral domain a nd fields and their examples

DEFINITION

A ring R is a nonempty set R together with two binary operations (usually written as addition and multiplication) that satisfy the following axioms. Suppose that $a, b, c \in R$.

- $\bullet \quad a+b\in R.$ (R is closed under addition.)
- 2 a + (b + c) = (a + b) + c. (Associativity of addition)
- a + b = b + a. (Commutativity of addition)
- 1 There is an element $0_R \in R$ such that a + 0 = 0 + a = a. (Additive Identity or Zero element).
- 6 For each $a \in R$, the equation $a + x = 0_R$ has a solution in R, usually denoted -a. (Additive Inverses)
- $ab \in R$. (R is closed under multiplication)
- a(bc) = (ab)c. (Associativity of multiplication)
- 8 a(b+c) = ab + ac and (a+b)c = ac + bc. (Distributive laws)

DEFINITION

A commutative ring R is a ring which also satisfies

9 ab = ba, for all $a, b \in R$. (Commutativity of multiplication)

DEFINITION

A <u>ring with identity</u> is a ring R that contains an element 1_R satisfying the following.

 $1_R a = a 1_R = a$, for all $a \in R$. (Multiplicative Identity)

EXAMPLE

- ${f 1}$ ${\Bbb Z}$ with the usual definition of addition and multiplication is a commutative ring with identity.
- \mathbb{Z}_n with addition and multiplication as defined in chapter 2 is a commutative ring with identity.
- f 3 The set E of even integers is a commutative ring (without identity).
- The set O of odd integers is not a ring.
- **6** The set $T = \{r, s, t, z\}$ is a ring under the addition and multiplication defined below.

+	Z	r	S	t
Z	Z	r	S	t
r	r	Z	t	S
5	5	t	Z	r
t	t	5	r	Z

and

•	Z	r	5	t
Z	Z	Z	Z	Z
r	z	Z	r	r
S	Z	Z	S	S
t	Z	Z	t	t

EXAMPLE

- **6** The set $M_2(\mathbb{R})$ of 2×2 matrices with real entries is a (noncommutative) ring with identity.
- Similarly, the sets $\mathbb{M}_2(\mathbb{Z})$, $\mathbb{M}_2(\mathbb{Z}_n)$, $\mathbb{M}_2(\mathbb{Q})$, $\mathbb{M}_2(\mathbb{C})$ are (noncommutative) rings with identity.
- 8 $C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous} \}$ is a ring under the operations fg(x) = f(x)g(x) and (f+g)(x) = f(x) + g(x).

Kevin James

MTHSC 412 Section 3.1 - Definition and Examples of F

DEFINITION

An integral domain is a commutative ring R with identity $1_R \neq 0_R$ that satisfies the following.

① Whenever $a, b \in R$ and ab = 0, either a = 0 or b = 0.

EXAMPLE

- $oldsymbol{1}{\mathbb Z}$ is an integral domain.
- ② If p is prime, then \mathbb{Z}_p is an integral domain.
- **4** \mathbb{Z}_6 is **NOT** and integral domain.

DEFINITION

A <u>field</u> is a commutative ring R with identity $1_R \neq 0_R$. that satisfies the following condition.

Proof For each $0_R \neq a \in R$, the equation $ax = 1_R$ has a solution in R.

EXAMPLE

- ① Q is a field.
- \mathbb{R} is a field
- \odot C is a field.
- 4 If p is prime then \mathbb{Z}_p is a field.